

A VERY ABBREVIATED INTRODUCTION TO POWDER DIFFRACTION

BRIAN TOBY Senior Scientist Group Leader, Computational X-ray Science APS Chief Computational Scientist

2018 NX School

OUTLINE

- Diffraction properties of atoms with x-rays and neutrons
- Diffraction from single-crystals vs. powders
- Why do we use powder diffraction?
- Materials effects in powder diffraction
- Instruments for powder diffraction collection
- Crystallographic analysis of powder diffraction data
- Appendices:
 - More on peak shapes
 - More on crystallography
 - Where to go for more information

WHY DID CRYSTALLOGRAPHY REVOLUTIONIZE SCIENCE?

- 1. Crystallography was the first scientific technique that provided <u>direct</u> information about molecular structure
 - Early work was intuitive: structures assigned based on patterns and symmetry (some results predate X-rays!)
- 2. X-ray and neutron diffraction observations can be modeled very accurately directly when the molecular structure is known
- 3. Diffraction can provide a very large number of independent observations
 - probability of finding an incorrect structure model that is both plausible and is in good agreement with the diffraction observations is very small (but not zero!)
- 4. Computer-assisted least-squares optimization allows structural models to be improved, limited only by the quality of the data
- 5. Statistical and brute-force techniques overcomes the incomplete nature of diffraction observations (direct methods vs. "the phase problem").

100+ years later, no other technique offers as much power for learning about molecular structure!

Resonant scattering: scattering at a resonance edge causes atoms to "light up"

Experiments are sometimes performed at wavelengths close to absorption edges to enhance the scattering from particular elements

X-rays

The x-ray form factor has in fact three components:

- f(Q) + f'(λ) + i f"(λ)
 - f is determined by Q and the number of electrons in an atom and is independent of wavelength
 - f' and f" are small except at wavelengths very close to an atom's absorption edge

At wavelengths close to an edge absorption becomes high; fluorescence occurs above the edge.

Neutrons

Scattering lengths for most atoms are wavelength-independent.

A similar "resonant scattering" type experiment can sometimes be performed comparing samples containing different isotopes (\$\$ to \$\$\$\$\$)

A few isotopes (mostly lanthanides and actinides) have adsorption edges at accessible wavelengths.

 This is usually a curse rather than a blessing: it makes TOF neutron scattering had to analyze

12

Diffraction from random polycrystalline material In a sufficiently large, randomly Diffracted oriented polycrystalline sample Beam (e.g. a powder) contains a very large number of crystallites. A beam impinging on the sample will find a representative number of Incident crystallites in the right orientation Beam for diffraction Diffraction occurs only at specific angles, those where Bragg's Law is satisfied.

UNDERSTANDING SAMPLE EFFECTS (I): CRYSTALLITE (SIZE) BROADENING The Fourier transform (FT) from an *infinite* array of regularly spaced objects is an array of delta functions. The FT from a *finite* length array is broadened; all maxima are broadened equally in Q (or d).

UNDERSTANDING SAMPLE EFFECTS (II): MICROSTRAIN (RESIDUAL STRESS) BROADENING

Strain & stress changes the lattice constants of a material

- In a material with residual stress
 - some crystallites are under tension,
 - others are compressed

Shift of peak \approx Q, broadening increases linearly with Q (Δ Q/Q or Δ d/d constant)

ANISOTROPIC BROADENING: BROADENING CAN BE DIRECTION-DEPENDENT

Crystallite broadening will vary with *hkl* when crystallites have smaller average dimensions in certain crystallographic directions, broadening reflections by class

Microstrain broadening will vary with *hkl* if a material is more stiff (harder) in some crystallographic directions than others, again broadening reflections by class

$$\boldsymbol{\sigma}^{2}(\boldsymbol{M}_{hkl}) = \sum_{HKL} S_{HKL} h^{H} k^{K} l^{L} , H + K + L = 4$$

Cubic – m3m – 2 terms

 $\boldsymbol{\sigma}^{2}(M_{hkl}) = S_{400}(h^{4} + k^{4} + l^{4}) + \Im S_{220}(h^{2}k^{2} + h^{2}l^{2} + k^{2}l^{2})$

General expression - triclinic - 15 terms

$$\begin{split} \sigma^2(M_{hkl}) &= S_{400}h^4 + S_{040}k^4 + S_{004}l^4 + 3\bigl(S_{220}h^2k^2 + S_{202}h^2l^2 + S_{022}k^2l^2\bigr) + \\ & 2\bigl(S_{310}h^3k + S_{103}hl^3 + S_{031}k^3l + S_{130}hk^3 + S_{301}h^3l + S_{013}kl^3\bigr) + \\ & 4\bigl(S_{211}h^2kl + S_{122}hk^2l + S_{112}hkl^2\bigr) \end{split}$$

Area Detection

- With an area detector, a complete powder diffraction pattern can be collected in a fraction of a second.
 - Fast
 - Medium resolution
 - High background

Highest resolution requires high collimation. Optimal is a crystal analyzer between the sample and detector: 11-BM Diffractometer

Neutron Powder Diffraction with Spallation Source

- Spallation source provides a broad band of wavelengths in sharp pulses
 - TOF detection allows measurement of intensity versus wavelength
 - Each detector provides a full diffraction pattern
 - Data collection times:
 - Seconds to hours

Fitting crystallographic data from powder diffraction -- what is it all about?

- We perform an experiment:
 - Get lots of intensity and position measurements in a diffraction measurement: what do they tell us?
- Obtain an unit cell that fits the diffraction positions (indexing)
- "Solve the structure": determine an approximate model to match the intensities
- Add/modify the structure for completeness & chemical sense
- Optimize the structure (model) to obtain the best fit to the observed data
 - This is usually done with Gauss-Newton least-squares fitting
 - Parameters to be fit are structural and may account for other experimental effects
- Least Squares gives us a Hessian matrix; inverse is variance-covariance matrix which gives uncertainties in the parameters

Crystallography from powder diffraction: before Rietveld

How did crystallographers use powder diffraction data?

- Avoided powder diffraction
- Manually integrate intensities
 - discard peaks with overlapped reflections

Or

- rewrote single-crystal software to refine using sums of overlapped reflections

Simulation of powder diffraction data was commonly done

- Qualitative reasoning: similarities in patterns implied similar structures
- Visual comparison between computed and observed structure verifies approximate model
- Fits, where accurate (& precise) models were rarely obtained

Error propagation was difficult to do correctly (but not impossible)

Calculation of Powder Diffraction: Graphical Example

hkl	mult	D-space	F _{hkl}	phase	054		744		050	000	004	051	X 9990 744	000	850	000	001
6,5,1	48	1.548	0.29	0	732	800	741	820	653	660 822	831 743	732	800 741	820	003	822	743
7,3,2	48	1.548	1.709	180									× ×				
8,0,0	6	1.5236	29.45	0								×	$\int ^{*} \times$				
7,4,1	48	1.5004	2.327	0	1							××	× 1 ×>				
8,2,0	24	1.4781	3.703	0								×××	1. 3.273	××.			××,
6,5,3	48	1.4569	1.27	0								~ X	1× *** ,			×	ŶŶ.
6,6,0	12	1.4365	0.242	180								- X Š		XXXX		××××	Ľ××¥
8,2,2	24	1.4365	2.086	0								* *		××	Xx 🖄	X X	× ×
8,3,1	48	1.417	0.22	180								*			×	^* ×	
7,4,3	48	1.417	1.827	180								4_	+ + +				
 Generate reflection list Compute F_{hkl} from model 					3) Peak heights are generated from F _{hkl} ^{2*} multiplicity						 4) Convolute peaks & add background 5) Optimize model, peak widths, etc. to improve fit 						

Single crystal fitting	Powder data fitting						
Minimize equation $\Sigma w_i [y_i - Y(x_i, \mathbf{p})]^2$ where							
Data: y _i = F _{hkl (obs)}	y _i = observed powder diffraction intensities						
Model: $Y(x_i, \mathbf{p}) = F_{hkl (calc)}$	Y(<i>x_i</i> , p) = computed diffraction intensities from (F _{hkl (calc)} , background model, profile convolution, preferred orientation correction						
Parameters $(p_1, p_2, p_3 p_m)$: atomic coordinates, displacement (T) factors	 + lattice parameters + "experimental" parameters for peak shapes, background 						

Δ

Rietveld Applications

- Crystallographic structure determination
- Quantify amounts of crystalline phases
 - (Amorphous content possible indirectly)
- Engineering properties
 - Residual stress/Crystallite sizes
 - Preferred orientation
- Lattice constant determination

Disadvantage of Rietveld: Many non-structural parameters need to be fit

- Background
 - fixed
 - functions
- Peak shape
 - "fundamental parameters"
 - functions
- Lattice constants
 - zero correction
 - flat plate terms

- Scaling
 - Phase fractions
- Structural parameters
 - atom positions
 - occupancies
 - displacement parameters
- Preferential Orientation
- Absorption

Powder diffraction offers fewer observations and worse peak-to-background than single crystal diffraction

SURVEY OF RIETVELD SOFTWARE

(There are a huge number of historical codes). These are the ones that are actively developed with wide use:

- FullProf: widely used, excellent support for magnetic scattering
- TOPAS: commercial; fundamental parameter peak shapes; very fast. Machine algebra allows arbitrary models
- MAUD: primarily for microscopic characterization (texture,...)
- JANA: primary focus modulated structures, excellent charge-flipping structure solution
- EXPO: primary focus direct-methods structure solution
- RIETAN: somewhat dated, widely used in Japan
- GSAS/EXPGUI: first comprehensive code; no longer supported (replaced by GSAS-II); limited magnetic scattering support
- GSAS-II: only code started in current decade; supports start-to-finish analysis process; sequential refinement mode for fitting large numbers of related patterns, still being completed

WHAT CAN YOU DO WITH GSAS-II?

GSAS-II does everything in GSAS/EXPGUI, and has extensive capabilities available only in very specialized programs

- Data reduction/initial processing
 - Image calibration
 - Image integration
 - Peak fitting/position determination
 - PDF computation (neutrons eventually)
 - TOF calibration
- Structure solution
 - Pattern
 - Charge flipping
 - Rigid body simulated annealing
- Crystallographic analysis
 - Powder diffraction
 - Single-crystal diffraction
 - Neutron and x-ray diffraction
 - Fitting of any of the above, combined

- Magnetic scattering (incommensurate, coming soon)
- Fitting of modulated (3+1) structural models
 - Neutron or x-ray
- Fitting of twinned single-crystal datasets
- Parametric structural analysis
 Parametric equation fitting
- 2D dataset fitting:
 - Strain fitting
 - Texture fitting
- Stacking fault modeling (DIFFaX)
- Small-angle scattering analysis
- Reflectometry (CW)

Argonne 🛆

51

Lorentz (Cauchy) and Gaussian Broadening Functions

Most instrument & sample broadening contributions are Lorentzian or Gaussian

Normalized Gaussian

$$G(\Delta T, \Gamma_G) = \sqrt{\frac{4\ln 2}{\pi \Gamma_G^2}} \exp\left[\frac{-4\ln 2(\Delta T)^2}{\Gamma_G^2}\right]$$
Normalized Lorentzian

$$L(\Delta T, \gamma_L) = \frac{2}{\pi \gamma_L} \frac{1}{1 + \left(\frac{2\Delta T}{\gamma_L}\right)^2}$$

Note that peak widths vary so Γ_G and γ_L are both functions of Q

Gaussian & Lorentzian functions compared. Both curves have same FWHM & area, but note the much longer tails for the Lorentzian.

When Strain Differs by Reflection Class: "Anisotropic peak broadening"

Strain may be anisotropic

- think of a layered material where the layers can be pulled apart without much effort, but the layers themselves are quite "hard" (resistant to applied forces).
- Such a material will be "squishy" in the layer direction and rigid in the other two (more broadening in the squishy direction.)

Canonical anisotropic strain model: P. W. Stephens, *Journal of Applied Crystallography* **32**, 281 (1999).

 Restricts strain components in terms of 1st & 2nd-order terms allowed by lattice symmetry

Anisotropic strain broadening terms

Broadening – as variance

$$\boldsymbol{\sigma}^{2}(\boldsymbol{M}_{hkl}) = \sum_{HKL} S_{HKL} h^{H} k^{K} l^{L} , H + K + L = 4$$

General expression – triclinic – 15 terms

$$\sigma^{2}(M_{hkl}) = S_{400}h^{4} + S_{040}k^{4} + S_{004}l^{4} + 3(S_{220}h^{2}k^{2} + S_{202}h^{2}l^{2} + S_{022}k^{2}l^{2}) + 2(S_{310}h^{3}k + S_{103}hl^{3} + S_{031}k^{3}l + S_{130}hk^{3} + S_{301}h^{3}l + S_{013}kl^{3}) + 4(S_{211}h^{2}kl + S_{121}hk^{2}l + S_{112}hkl^{2})$$

Symmetry effects – monoclinic (b unique) – 9 terms

$$\sigma^{2}(M_{hkl}) = S_{400}h^{4} + S_{040}k^{4} + S_{004}l^{4} + 3S_{202}h^{2}l^{2} + 3(S_{220}h^{2}k^{2} + S_{022}k^{2}l^{2}) + 2(S_{301}h^{3}l + S_{103}hk^{3}) + 4S_{121}hk^{2}l$$

Anisotropic strain broadening terms

Symmetry effects – orthorhombic - mmm – 6 terms $\sigma^{2}(M_{hkl}) = S_{400}h^{4} + S_{040}k^{4} + S_{004}l^{4} + 3(S_{220}h^{2}k^{2} + S_{202}h^{2}l^{2} + S_{022}k^{2}l^{2})$

Tetragonal – 4/mmm – 4 terms

$$\boldsymbol{\sigma}^{2}(M_{hkl}) = S_{400}(h^{4} + k^{4}) + S_{004}l^{4} + 3S_{220}h^{2}k^{2} + 3S_{202}(h^{2}l^{2} + k^{2}l^{2})$$

Cubic - m3m - 2 terms

 $\boldsymbol{\sigma}^{2}(M_{hkl}) = S_{400}(h^{4} + k^{4} + l^{4}) + 3S_{220}(h^{2}k^{2} + h^{2}l^{2} + k^{2}l^{2})$

Trigonal, Rhombohedral & Hexagonal – it depends – 3 or 4 terms

The Lattice

- Crystals are constructed from repeated arrangements of atoms.
- Crystalline structure can be described as set of "identical boxes" stacked in 3D; the contents of each box is identical (exception: quasicrystals)
 - <u>A lattice</u> is a mathematical concept where each lattice point describes an identical environment; lattice points are the corners of the "identical boxes."

Commonly used phrases such as "lattice compound" or "interstitials in the lattice" misuse the concept of a lattice.

Space Groups

- Not all combinations of symmetry and lattice types are compatible
 - Example: mirror plane perpendicular to a non-orthogonal pair of axes is not possible

- Δ There are only 230 unique ways to combine symmetry elements for a 3D lattice: <u>230 space groups</u>
- ∆ Space groups are tabulated in <u>The International Tables</u> <u>of Crystallography, Volume A</u>
- $\Delta \ \ \text{I recommend } \underbrace{\text{Space Groups for Solid State Scientists}}_{\text{by G. Burns and A. M. Glazer as a good place to learn}_{\text{about space groups and their properties}}$

Where to go for more...

There are many texts available. My favorites:

Fundamentals of Crystallography (2nd Ed.), Carmelo Giacovazzo, et al. (Oxford, 2002, ~\$90) [Modern & very comprehensive, quite reasonable price considering quality, size & scope.]

X-Ray Structure Determination: A Practical Guide (2nd Ed.), G. H. Stout, & L. H. Jensen (Wiley, 1989, ~\$150) [Focused on small-molecule single crystal techniques, dated, but very easy to read; very good explanations of fundamentals. 1st book for many in field.]

APS Web lectures on powder diffraction crystallography:

www.aps.anl.gov: look for Education/Schools/Powder Diffraction Crystallography (http://www.aps.anl.gov/Xray_Science_Division/Powder_Diffraction_Crystallography) Intended to introduce Rietveld refinement techniques with GSAS & EXPGUI